

NASH-TAG 2021 Park City, Utah March 11-13, 2021 Robert Foster, PharmD, PhD, CEO

smart drug smart technology smart development

Theory	Prediction and E	Findings	
Modifying Cyclosporine A can greatly change its binding and functional properties	Modifications that increase <u>calcineurin</u> bir (voclosporin) Modifications that decrease <u>calcineurin</u> bir increase cyclophilin binding and inhibition	Inhibition of each cyclophilin isoform produces distinct therapeutic effects	
Cyclosporine A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Voclosporin Aurinia Pharma \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	CRV431	
Nearly 40 years of clinical use as immunosuppressive drug for organ transplantation and	Modifications increase affinity for <u>calcineurin</u> and increase immunosuppression potency	Modifications increase affinity for <u>cyclophilins</u> (13-fold) and eliminate immunosuppression	CRV431 binds potently (Ki≈1 nM) to around 10 of 17 cyclophilin isoforms in the human body

Why Target Cyclophilins?

autoimmune diseases

Cyclophilins shown to play deleterious roles in:

Viral Hepatitis • Cancers • Acute And Chronic Lung Injury • Myocardial Infarction • Stroke • Arthritis • Atherosclerosis • Thrombosis

- Aortic Aneurysm Coronary Artery Disease Pulmonary Arterial Hypertension ALS Alzheimers Disease Multiple Sclerosis
- Muscular Dystrophies
 Traumatic CNS Injury

MULTIPLE THERAPEUTIC ACTIONS THROUGH CYCLOPHILIN INHIBITION

CRV431

Pan-Cyclophilin

Inhibitor

(Ki ≈ 1 nM)

CD147 pro-inflammatory receptors

by binding to CD147 **Cyclophilin B** (endoplasmic reticulum)

Cyclophilin A

(cytosol and secreted)

Secreted from injured cells and

acts as proinflammatory cytokine

Promotes fibrotic scarring by controlling collagen production

Cyclophilin D

(mitochondria)

Regulates mitochondrial metabolism

Promotes mitochondrial pore opening leading to mitochondrial and necrotic cell death

ANTIFIBROTIC AND OTHER **PRECLINICAL ACTIVITIES**

Human Cell Cultures		CRV431 Effects		
Hepatic stellate cells, fibroblasts (multiple organs)	TGFβ or endogenous stimulation	 ▼ fibrotic gene expression ▼ procollagen and fibronectin secretion 		
Blood platelets	Collagen and thrombin stimulation	▼procoagulant platelet formation		
Human Tissue Explants (Pr	ecision Cut Slice Cultures)	CRV431 Effects		
Liver explants (4 donors)	TGFβ+PDGF-BB or endogenous stimulation	▼ inflammatory/fibrotic gene expression		
IPF lung explants (1 donor)	Endogenous stimulation	 Inflammatory/fibrotic protein secretion tissue fibrosis 		
Animal Models		CRV431 Effects		
Animal Models Mice (NASH)	Western diet + carbon tetrachloride	CRV431 Effects 82% ▼ fibrosis; ▼ weight gain		
Animal Models Mice (NASH) Mice (NASH)	Western diet + carbon tetrachloride High fat diet + early STZ (4 studies)	 CRV431 Effects 82% ▼ fibrosis; ▼ weight gain 37-57% ▼ fibrosis; ▼ weight gain; 50% ▼ liver tumors 		
Animal Models Mice (NASH) Mice (NASH) Mice (liver fibrosis)	Western diet + carbon tetrachloride High fat diet + early STZ (4 studies) Carbon tetrachloride	 CRV431 Effects 82% ▼ fibrosis; ▼ weight gain 37-57% ▼ fibrosis; ▼ weight gain; 50% ▼ liver tumors 44% ▼ fibrosis 		
Animal Models Mice (NASH) Mice (NASH) Mice (liver fibrosis) Mice (kidney fibrosis)	Western diet + carbon tetrachloride High fat diet + early STZ (4 studies) Carbon tetrachloride Unilateral ureter obstruction	 CRV431 Effects 82% ▼ fibrosis; ▼ weight gain 37-57% ▼ fibrosis; ▼ weight gain; 50% ▼ liver tumors 44% ▼ fibrosis 42% ▼ fibrosis 		
Animal Models Mice (NASH) Mice (NASH) Mice (liver fibrosis) Mice (kidney fibrosis) Rats (liver fibrosis)	Western diet + carbon tetrachloride High fat diet + early STZ (4 studies) Carbon tetrachloride Unilateral ureter obstruction Thioacetamide	 CRV431 Effects 82% ▼ fibrosis; ▼ weight gain 37-57% ▼ fibrosis; ▼ weight gain; 50% ▼ liver tumors 44% ▼ fibrosis 42% ▼ fibrosis 48% ▼ fibrosis; prevented cirrhosis 		
Animal Models Mice (NASH) Mice (NASH) Mice (liver fibrosis) Mice (kidney fibrosis) Rats (liver fibrosis) Mice (acute lung injury)	Western diet + carbon tetrachloride High fat diet + early STZ (4 studies) Carbon tetrachloride Unilateral ureter obstruction Thioacetamide Lipopolysaccharide inhalation	 CRV431 Effects 82% ▼ fibrosis; ▼weight gain 37-57% ▼ fibrosis; ▼ weight gain; 50% ▼ liver tumors 44% ▼ fibrosis 42% ▼ fibrosis 48% ▼ fibrosis; prevented cirrhosis ▼ BAL fluid inflammatory cytokines, neutrophils 		

NASH CLINICAL PROGRAM

Phase 1 completed

Phase 2a ongoing – completion Q2 2021

Phase 2b in planning – starting Q3 2021

PHASE 1 HEALTHY SUBJECTS - SAFETY, TOLERABILITY AND PK

Single Ascending Dose (SAD)

- ✓ N = 32 (24 CRV431; 8 Placebo)
- Doses: 75 mg, 225 mg, 375mg, 525 mg (single doses)
- Drug Exposure is in the range in which efficacy was demonstrated in pre-clinical models
- Pharmacokinetics are first order and support once daily dosing
- No SAE's, Mild AE's, No dose response in AE's or changes in clinical labs
- ✓ No changes in vital signs or ECG

Multiple Ascending Dose (MAD)

- ✓ N = 25 (All CRV431)
- ✓ Doses: 75 mg, 150 mg, 225 mg, 300 mg, 375 mg QD x 28 Days
- Drug Exposure starting at 75 mg QD is in the range in which efficacy was demonstrated in pre-clinical models
- Pharmacokinetics are first order and support once daily dosing
- ✓ No SAE's, Mild AE's, No dose response in AE's or changes in clinical labs
- ✓ No changes in vital signs or ECG
- Data supported initiation of Phase
 2a NASH Trial

Drug-Drug Interaction (DDI)

✓ N= 18

 ✓ Single CRV431 Drug Interaction Study with tenofovir

PHASE 2A **NASH SUBJECTS - SAFETY, TOLERABILITY AND PK**

OBJECTIVES

- Safety and tolerability of once daily (qd) 75 mg and 225 mg doses of CRV431 in presumed NASH fibrosis stage 2 (F2)/fibrosis stage 3 (F3) patients compared to placebo control for 28 days
 - Exploratory biomarkers of fibrosis and lipid metabolism: collagens, matrix metalloproteinases, lipidomics, and genomics
 - Multi-omic/trait data analysis by AI-POWR[™]

STUDY DESIGN Multi-center (10 Sites), single-blind, placebo-controlled study

Univariate Endpoints: AST, Pro-C3, ELF Score, Fibroscan

	Cohort*	Fibrosis Stage	N	Day 1 – 28, faster oral dosing	Day 29 – 42	Multivariate multi-omics-trait
	Α	F2/F3	12	CRV431 75 mg		Al-POWR™ analysis to
F2/F3	В	12/10	6	Placebo	Observation/Follow-up	biomarkers in F2/F3 NASH for
Patients (n=36)	С	F2/F3	12	CRV431 225 mg		Phase 2b Patient/Biomarker Selection
(D		6	Placebo		

PHASE 2A **BIOINFORMATICS & AI**

AI-Machine Learning: Responder Analysis

PHASE 2A CRV431 75 MG QD PO, ALT %CHANGE FROM BASELINE

PD NOMENCLATURE DIRECT INHIBITORY IMAX MODEL WITH BASELINE EFFECT

PHASE 2A EARLY PK-PD RESULTS

- Early signs of a concentration-effect relationship after lowest dose of CRV431 and only 28 days treatment
- IC50 is achieved even by 75 mg QD, but variability is high and requires HIGHER concentrations to confirm
- Data are pending with a 225 mg QD cohort

PHASE 2B NASH SUBJECTS - EFFICACY

OBJECTIVES

- Efficacy of once daily (qd) 75 mg and 225 mg doses of CRV431 in biopsy proven NASH F2 and F3 patients compared to placebo over 6 months of dosing
 - 1-point reduction in fibrosis score in liver biopsies (pathologist and AI read)
 - AI-POWR[™] identification of biomarkers of CRV431 response from multi-omics, clinical labs, and other trait data

STUDY DESIGN

- Multi-Center (28 US Sites), triple-blind, placebo-controlled (2:1), study
- Liver biopsies, MRE scans, Fibroscan, ALT, AST, Pro-C3, ELF-Score, fibrosis biomarkers, lipidomics, genomics, proteomics

••••	Cohort*	Fibrosis Stage	Ν	6 Months	3 Month
	Α	E2/E3	100	CRV431 75 mg	
F2/F3	В	12/13	50	Placebo	Observation/Follow-up
Patients (n=300)	С	F2/F3	100	CRV431 225 mg	
(11-300)	D		50	Placebo	

Multivariate multi-omics-trait AI-POWR[™] analysis to update CRV431 activity biomarkers in F2/F3 NASH for Phase 3 Patient/Biomarker Selection

CONTACT US

Robert T. Foster, PharmD, Ph.D. Chief Executive Officer

Hepion Pharmaceuticals Inc. 399 Thornall Street, First Floor Edison, New Jersey, USA, 08837 Email: rfoster@hepionpharma.com

www.hepionpharma.com

