In Vitro Metabolism of CRV431, a Novel Cyclophilin Inhibitor for the Treatment of HBV

<u>Robert T. Foster</u>, Daren R. Ure, Daniel J. Trepanier Contravir Pharmaceuticals, Edison, New Jersey, USA

Contravir Pharmaceuticals Inc.

BACKGROUND

CRV431 is a non-immunosuppressive cyclosporine derivative designed to bind cyclophilins but not calcineurin, and inhibit the action of cyclophilins in the

Component	Proposed Biotransformation	Relative LCMS retention	m/z	∆ m/z	% of Total Drug-related Mass Versus Time (minutes)							
					0 min	10 min	20 min	40 min	80 min			
CRV431	NA	1.0	1326	0	96.4	95.7	94.7	93.8	ND			
CRV431 unsaturated impurity	NA	0.96	1324	NA	3.6	3.6	3.7	4.1	ND			
M1	Hydroxylation	0.8	1342	+16	0	0.1	0.4	0.5	ND			
M3	Demethylation	0.67	1312	-14	0	0	0.1	0.2	ND			
M8	Hydroxylation	0.52	1342	+16	0	0.5	1	1.6	ND			

life cycle of many viruses, including HBV. As it is known that cyclosporins are extensively metabolized via cyctochromes P450, the aim of this study was to characterize CRV_{431} metabolism in liver microsomes from several species *in vitro*.

METHODS

The *in vitro* metabolism of CRV_{431} was studied in microsomes from rat, monkey and human livers (Sekisui Xenotech). Microsomes were incubated at 37 °C for 0, 10, 20, 40, and 80 minutes with 0.1, 1 and 10 µg/mL CRV_{431} in the presence of an NADPH regenerating system, and the metabolite profiles were assessed utilizing electrospray ionization liquid chromatography mass spectrometry (LC-ESI-MS) in positive ion mode.

RESULTS

 CRV₄₃₁ was extensively metabolized through oxidation to produce various hydroxylated and 1 μg/ml CRV₄₃₁ incubation for 40 minutes

CRV₄₃₁ Metabolism in Cynomolgus <u>Monkey</u> Liver Microsomes

1 μg/ml CRV₄₃₁ incubation for 10 minutes

Component	Proposed Biotransformation	Relative LCMS retention	m/z	Δ m/z	% of Total Drug-related Mass Versus Time (minutes)							
					0 min	2.5 min	5 min	10 min	20 min	40	80	
										min	min	
CRV431	NA	1.0	1326	0	96.3	59.4	21.5	12.3	4.3	6.6	6.7	
CRV431 unsaturated impurity	NA	0.96	1324	-2	3.7	3.8	1.7	0.8	0	0	0	
M1	Hydroxylation	0.8	1342	+16	0	18.1	24.2	16.1	3.2	1.7	0.9	
M2	Demethylation	0.8	1312	-14	0	3.1	6.7	2.7	0.7	0	0	
M3	Demethylation	0.67	1312	-14	0	3.8	7.6	8.3	5.4	3.3	0.7	
M4		0.65	1310	-16	0	0.3	0.5	0.6	0.6	0	0	
M5	Di-demethylation	0.62	1298	-28	0	0	0.2	0.4	0.7	0.6	0	
M6	Di-hydroxylation	0.62	1358	+32	0	2.4	8.2	12.6	10.9	4.8	1.3	
M7	Demethylation + Hydroxylation	0.58	1328	+2	0	0	0	1.1	0	0	0	
M8	Hydroxylation	0.52	1342	+16	0	1.9	3.7	3.7	2.0	0	0.4	
M9	Demethylation + Hydroxylation	0.47	1328	+2	0	1.9	8.6	15.6	24.8	25.2	17.6	
M10	Di-hydroxylation	0.39	1358	+32	0	0.8	4.4	6.9	6.7	4.2	1.4	
M11	Demethylation + Hydroxylation	0.30	1328	+32	0	0.2	1.3	2.8	6.5	8.7	11.7	
M12	Di-hydroxylation + demethylation	0.17	1344	+ 18	0	0.1	0.7	1.8	6.2	11.7	21.6	
Additional Metaboli	tes Not Present in Human Liver N	Aicrosome Experiment	ts									
M13		0.75	1340	+14	0	1.1	1.6	1.1	0	0	0	
M14		0.70	1340	+14	0	0.9	2.4	3.2	1.7	0.6	0	
M15	Hydroxylation	0.65	1342	+16	0	1.6	3.3	3.9	3.3	2.4	1.7	
M16	Tri-hydroxylation	0.50	1374	+48	0	0.4	1.8	2.6	2.2	1.4	0	
M17	Tri-hydroxylation	0.46	1374	+48	0		0.4	0.8	0.9	1.1	0	
M18	Di-demethylation + hydroxylation	0.41	1314	-12	0	0	0.2	0.6	2.3	4.1	5.4	
M19	Di-demethylation + hydroxylation	0.31	1314	-12	0	0	0.2	0.4	1.3	1.8	2.8	
M20	Tri-hydroxylation	0.25	1374	+48	0	0.1	0.8	1.6	3.3	2.9	1.8	
M21	Di-hydroxylation + demethylation	0.13	1344	+18	0	0	0	0	1.2	3.7	8.0	
M22	Di-hydroxylation + demethylation	0.32	1344	+18	0	0	0	0	5.6	8.4	11.1	
M23	Di-hydroxylation + demethylation	0.35	1344	+18	0	0	0	0	3.6	2.6	1.4	
M24	Hydroxylation	0.18	1342	+16	0	0	0	0	2.3	4.0	5.7	

- demethylated species.
- Metabolite species identified, as their sodium adducts, included monohydroxylated CRV₄₃₁ (two distinct metabolites, 1342 m/z), di-hydroxylated CRV₄₃₁ (1358 m/z), demethylated CRV₄₃₁ (two distinct metabolites, 1312 m/z), demethylated and hydroxylated CRV431 (two distinct metabolites, 1328 m/z), didemethylated and hydroxylated CRV₄₃₁ (1314 m/z), and didemethylated and dihydroxylated CRV₄₃₁ (1316 m/z).
- The magnitude and extent of metabolism (20 min) was greatest in monkey (>95%) followed by human (>70%) followed by rat (<5%).
- Importantly, all metabolites identified in human microsomes were correspondingly identified in monkey and rat microsomes. Hence, qualitatively, metabolism was similar across species, whereas there were quantitative differences.
- An *in vitro* cytochrome phenotyping study indicated

CRV₄₃₁ Metabolism in <u>Human</u> Liver Microsomes

	MSD1 1324 EIC	=1323.7:1324.7 (16 1	1.01\METAB013.D) A	PI-ES, Pos SIM Fra	: 260, "CPI 431-32"				
	🗆 MSD1 1344, EIC	=1343.7:1344.7 (16_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Fra	: 260, "CPI 431-32"				
	MSD1 1326, EIC MSD1 1342, EIC	=1325.7:1326.7 (16_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Frag PLES, Pos, SIM, Frag	: 260, "CPI 431-32"				
	MSD1 1312, EIC	=1341.7:1342.7 (16_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Frag PI-ES, Pos, SIM, Frag	: 260, "CPI 431-32"				
	MSD1 1328, EIC	=1327.7:1328.7 (16_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Fra	: 260, "CPI 431-32"				
	MSD1 1310, EIC	=1309.7:1310.7 (16_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Frag	: 260, "CPI 431-32"				
H	MSD1 1358, EIC	=1307.7:1308.7 (10_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Frag PI-ES, Pos, SIM, Frag	: 260, "CPI 431-32" : 260, "CPI 431-32"				
12	MSD1 1298, EIC	=1297.7:1298.7 (16_1	1_01\METAB013.D) A	PI-ES, Pos, SIM, Fra	: 260, "CPI 431-32"				
-				2					_
-				ο. Μ1 Φ					
1				1					
-									
120000 -					CRV431				
1					8 .				
00000 -					9				
-			M3		6				
80000 -			1.21		1				
-			0		1				
			M8	11	n				
60000 -			g		11				
-			6.0	6		97			
40000 -		M10 M	19	2	- 11	6 4			
-		M11 P	M6 M6	2 10	(A)	5			
20000 -	M12	224	M5 m4	CO MZ	. //	f.			
-	.76	e I j	8 8 8	11	8	jU.			
	A	- And I	Lel a Sinh	- Alaba	åll	A			An
0-									
	2	4	6	8	10	12 14	16	18	min

1 μg/ml CRV₄₃₁ incubation for 20 minutes

Component	Proposed Biotransformation	Relative LCMS retention	m/z	Δ m/z	% of Total Drug-related Mass Versus Time (minutes)					
					0 min	10 min	20 min	40 min	80 min	
CRV431	NA	1.0	1326	0	96.4	57.0	27.5	10.4	4.0	
CRV431 unsaturated impurity	NA	0.96	1324	NA	3.6	2.9	1.8	0.7	0.2	
M1	Hydroxylation	0.8	1342	+16	0	21.2	28.3	27.4	18.3	
M2	Demethylation	0.8	1312	-14	0	3.6	4.9	4.6	3.1	
M3	Demethylation	0.67	1312	-14	0	5.3	13.8	21.9	27.4	
M4		0.65	1310	-16	0	0.3	1.1	1.7	2.0	
M5	Di-demethylation	0.62	1298	-28	0	0	0.4	1.3	2.5	
M6	Di-hydroxylation	0.62	1358	+32	0	0	1.3	1.4	1.1	
M7	Demethylation + Hydroxylation	0.58	1328	+2	0	0.1	0.6	1.2	1.7	
M8	Hydroxylation	0.52	1342	+16	0	5.9	10.3	13.0	13.5	
M9	Demethylation + Hydroxylation	0.47	1328	+2	0	1.1	3.2	5.6	8.6	
M10	Di-hydroxylation	0.39	1358	+32	0	1.2	3.3	5.3	6.6	
M11	Demethylation + Hydroxylation	0.30	1328	+32	0	0.4	1.6	4.4	8.9	
M12	Di-hydroxylation + demethylation	0.17	1344	+ 18	0	0.1	0.5	1.0	1.9	

Cytochrome P450 Phenotyping

that cytochrome P450 3A4/5 is the major enzyme system involved. Enzymes 1A2, 2B6, 2C8, 2C9, and 2D6 are not involved in the *in vitro* metabolism of CRV₄₃₁.

CONCLUSION

CRV₄₃₁ was metabolized *in vitro* in similarity to other analogs in the cyclosporine drug class, and was qualitatively similar among all species. Knowledge about the metabolite profiles will be useful for further preclinical and clinical development of CRV₄₃₁ for chronic hepatitis B.

Targeted CYP-P450 enzyme	Inhibitor/solvent	Inhibitor/ solvent concentration	Incubation time (min)	CRV431 detected (pmol)	Percent loss of substrate	Percent CRV431 remaining	Rate of substrate disappearance (pmol/mg/min)	Percent of control	Percent inhibition		
ΝΛ	Water (solvent control)	NΔ	0	131	NA	100	NA	NC	ΝΔ		
			15	78.5	40.2	59.8	17.6	100	INA		
ΝΔ	Acetonitrile	0.5% v/v	0	129	NA	100	NA	NC	ΝΔ		
	(solvent control)	0.370 V/V	15	76.9	40.4	59.6	17.4	100	INA		
	Acetonitrile with 0.1% formic acid	1 00/ 1/14	0	129	NA	100	NA	NC	NA		
NA	(solvent control)	1.0% V/V	15	91.1	29.4	70.6	12.6	100			
NIA	40:60 Methanol:0.1 M Tris, pH 9.0 (solvent control)	0 50/ /	0	141	NA	100	NA	NC	NA		
NA		0.5% v/v	15	80.0	43.4	56.6	20.5	100			
	Eurofulling in gestanitrilg	10 μM	0	139	NA	100	NA	NC	No inhibition		
CTPIAZ	Furarylline in acetonitrile		15	84.7	39.1	60.9	18.2	104			
CVD2DC	Phencyclidine in water		0	137	NA	100	NA	NC	No inhibition		
CTP2D0		50 μινι	15	83.0	39.5	60.5	18.1	103			
	Gemfibrozil glucuronide in		0	137	NA	100	NA	NC			
CYP2C8	acetonitrile with 0.1% formic acid	100 μM	15	92.5	32.3	67.7	14.7	117	No inhibition		
	Tionilio ocid in ocotonitrilo	20	0	136	NA	100	NA	NC	6.0		
CTP2C9	hennic acid in acetonithie	20 μινι	15	87.3	35.7	64.3	16.2	93.1	0.9		
	Esomeprazole in 40:60 methanol:0.1	10	0	138	NA	100	NA	NC	27.2		
	M Tris, pH 9.0	το μινι	15	99.0	28.0	72.0	12.8	62.7	37.3		
	Parovetine in water	5 111/1	0	138	NA	100	NA	NC	No Inhibition		
		υ μινι	15	80.8	41.3	58.7	19.0	108			
CVD3A//5	Troleandomycin in acetonitrile	50	0	131	NA	100	NA	NC	100		
CTP5A4/5	noleandomych in acetonithe		noleandomychi in acetonitille	50 μίνι	15	155	No loss	118	NA	NA	100