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REVIEW

Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis
(NASH)
Daren R. Ure, Daniel J. Trepanier, Patrick R. Mayo and Robert T. Foster

Hepion Pharmaceuticals Inc, Edmonton, AB, Canada

ABSTRACT
Introduction: Cyclophilins are a family of diverse regulatory enzymes that have been studied for over
30 years; they participate in many pathophysiological processes. Genetic deletion or pharmacologic
inhibition of cyclophilins has shown therapeutic effects in a wide spectrum of disease models, including
liver disorders, and hence may be beneficial in treating nonalcoholic steatohepatitis (NASH).
Areas Covered: This articles briefly describes cyclophilin isomerases and the main classes of cyclophilin
antagonists; it then summarizes data showing cyclophilin participation in the major pathophysiological
activities that occur in NASH.
Expert Opinion: Optimization of therapeutic outcomes in the treatment of NASH may be best realized
by targeting multiple pathologic pathways, especially when treating advanced stages of the disease.
A preferred approach for achieving this goal is to use compounds such as cyclophilin inhibitors that
simultaneously target multiple disease processes. The pleiotropic benefits of this drug class derive from
the extraordinary functionality of prolyl isomerization as a regulatory mechanism and its evolutionary
diversification into many biochemical pathways. Nonimmunosuppressive analogs of cyclosporine A are
the most thoroughly characterized cyclophilin inhibitors and show significant potential to attenuate
several of the major pathophysiological events in NASH – mitochondrial dysfunction, cellular injury and
death, inflammation, and in particular, fibrosis.
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1. Introduction

NASH is commonly considered to be the hepatic manifestation
of metabolic syndrome, and many candidate therapies are justi-
fiably focused on normalizing the liver’s metabolic activities.
Reducing steatosis is a common goal and achieved by different
strategies such as blocking lipogenesis or stimulating lipolysis.
Another therapeutic goal is improvement in glucose and insulin
homeostasis since these are closely linked to lipid metabolism. It
is important to attenuate these drivers of NASH pathogenesis in
order to reverse disease course. However, NASH is a chronic,
multifactorial disease and unlikely to be universally responsive
to a single type of treatment. Residual pathological features may
persist even after addressing the major disease drivers, especially
in advanced disease stages where tissue architecture is substan-
tially changed. As precedence, eradication of hepatitis C virus
(HCV) from chronically infected individuals significantly reduces
the risk of liver-related morbidities such as hepatocellular carci-
noma (HCC) but does not eliminate it. Moreover, individuals with
cirrhosis or pre-cancerous liver nodules at the time of HCV era-
dication still retain high risks of HCC following sustained virolo-
gical response [1–4]. These findings advise us that treatments
should also directly target the many pathophysiological features
of chronic liver disease such as hepatocyte dysfunction/death,
inflammation, and fibrosis if the management of NASH is to be
complete [5].

Cyclophilin antagonists are a drug class that offers the
opportunity to treat multiple pathological processes. Since

the first identification of cyclophilins in 1984 [6,7], there have
been over 4000 publications on cyclophilins. Thirty years of
investigation has revealed their participation in a wide variety
of biochemical and pathophysiological pathways, and genetic
or pharmacologic inhibition of cyclophilins has demonstrated
therapeutic efficacy in at least 30 animal models of disease.
This has propelled the search and development of cyclophilin
inhibitors for treating human ailments, but no compound has
yet been clinically approved to specifically target cyclophilins.
CsA indeed is a relatively potent cyclophilin inhibitor, and
some of its clinical actions may occur through this mechanism,
but its additional immunosuppressive activity prevents its use
for most clinical conditions.

The cyclosporin class of cyclophilin inhibitors are espe-
cially good candidates for treating liver diseases due to their
first-pass extraction and steady-state accumulation in the
liver [8–10], and a previous review by Naoumov (2014)
describes their potential in a variety of liver disease [11].
Here we provide a more in-depth and up-to-date focus on
NASH-related studies. After an introduction to cyclophilins
and their pharmacological antagonists, we summarize the
studies that have addressed the role of cyclophilins across
a broad spectrum of NASH pathophysiology. Altogether
these studies overwhelmingly support the clinical investiga-
tion of cyclophilin inhibitors to alleviate disease from the
earliest drivers, such as mitochondrial dysfunction, to the
latest sequalae such as fibrosis and malignancy.
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2. Cyclophilin isomerases and pharmacological
antagonists

Cyclophilins are a family of enzymes that catalyze cis-trans iso-
merization of proline peptide bonds. Two other families of
enzymes, FK506 binding proteins (FKBP) and parvulins, also pos-
sess this type of enzymatic activity, and collectively the three
classes of peptidyl-prolyl enzymes are called immunophilins.
Prolyl peptide bonds are distinct from all other peptide bonds
in the human repertoire in that they can transition more easily
between cis and trans conformations. Only around 0.3% of non-
proline peptide bonds exist in the cis conformation, whereas
approximately 5.7% of proline bonds exist in this conformation
at steady state [12]. Prolines significantly define proteinmorphol-
ogy due to the geometric restrictions imposed by proline’s rigid
pyrrolidine ring. More importantly, protein conformation and
function can be regulated by the cis-trans flexibility of proline
peptide bonds and their catalysis by immunophilins at specific
microdomains of proteins. Prolyl isomerization between cis and
trans conformers is a process that is potentially inherent to every
protein and modulates not only the individual structure and
activity of the protein but also its binding interactions.
Uncatalyzed cis-trans transitions occur relatively slowly (e.g. min-
utes time scale), whereas cyclophilin-catalyzed isomerization
occur many orders of magnitude faster [13,14]. Thus, cyclophilins
substantially improve the temporal orchestration of biochemical
processes and have been shown to play roles in folding of
nascent peptides into proteins, protection from protein aggrega-
tion (chaperone activity), intracellular protein trafficking and
secretion, second messenger signaling, and control over a vast
array of protein-protein interactions [15–18]. Cyclophilin iso-
forms are present in all life forms – archaebacteria, bacteria,
plants, fungi, protists, animalia. Seventeen cyclophilin isoforms
exist in the human proteome and are present in all the major
compartments of all cells [19]. Also, many plant and animal
viruses including the hepatitis viruses B and C utilize host cyclo-
philins for replication, immune evasion, and other activities [20].

Considering the broad evolutionary and functional diversities of
cyclophilins and similarly, FKBP’s, it should come as no surprise
that their actions are evident across an equally diverse range of
pathophysiological conditions.

The inquiry into cyclophilins and their antagonists is an inter-
esting historical journey. The name, ‘cyclophilin’, originates from
its identification in 1984 as a binding partner of cyclosporine
A (CsA) [6], but not until 1989 was it determined that cyclophilins
also are prolyl isomerases [21]. Cyclosporine A (CsA) is a fungal
cyclic undecapeptide first isolated in 1971. It was discovered to
be a potent immunosuppressant, which led to its regulatory
approval in 1983 for preventing solid organ graft rejection. CsA
is the prototypical inhibitor of cyclophilin isomerase activity, but
its immunosuppressive activity is not primarily due to Cyp
A binding. Instead, immunosuppression results from the binding
of CsA-Cyp A dimers to the phosphatase, calcineurin, which
blocks calcineurin-mediated activation of nuclear factor of acti-
vated T cells (NFAT) and its downstream signaling. CsA blocks
Cyp A isomerase activity with relatively high affinity (Ki ≈ 15 nM).
Furthermore, it blocks the activity of most cyclophilin isoforms
(e.g. Cyp B, C, D, etc.) due to high evolutionary conservation of
the isomerase active sites [19]. Although CsA primarily is utilized
for its calcineurin inhibition, it has been tested clinically to inhibit
cyclophilins withmixed results in, for example, myocardial infarc-
tion and muscular dystrophies [22–27]. However, the use of CsA
for conditions other than those that benefit from immunosup-
pression unnecessarily puts individuals at risk of infections,
nephrotoxicity, and other immunosuppression-related toxicities.

Shortly after the discovery of CsA-Cyp A binding, it was found
that some synthetic modifications of CsA produced analogs that
were largely devoid of immunosuppressive activity but still
retained Cyp A binding [28,29]. Several of these nonimmunosup-
pressive CsA analogs have beenmade over the past 30 years and
have been investigated in many experimental models [30]. The
three compounds that have been studied most extensively are
NIM811, SCY-635, and alisporivir (Debio-025). All three, and alis-
porivir most extensively, have been evaluated in in clinical trials
for chronic hepatitis C since hepatitis C virus (HCV) replication is
dependent on interactions with host cell cyclophilins [31–36].
While largely safe and efficacious, none of the three compounds
advanced completely through development for application of
regulatory approval. Much has been learned over the years on
the structure-activity relationships of CsA analogs, for example
on how to minimize drug transporter interactions and how to
target the molecules intracellularly and extracellularly [37–40],
and compounds continue to be developed and evaluated.
CRV431 is one the most recently developed CsA analog and
currently in Phase 1 clinical trials. Relevant to liver disease,
CRV431 has demonstrated antiviral activity toward hepatitis
B and C viruses, anti-fibrotic activity in diet-induced and chemi-
cal-induced models of liver fibrosis, and the capacity to decrease
NASH-induced liver tumors in mice [41–43]. Other chemical
classes also have been explored as cyclophilin inhibitors but
generally show disadvantages compared to CsA analogs. For
example, the immunosuppressive macrolide, sanglifehrin A,
and nonimmunosuppressive sangamide derivatives of it (e.g.
NV556), are potent cyclophilin inhibitors but generally have
shown poor bioavailability and have not been thoroughly
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studied, including their toxicology [44–47]. Many types of small
molecules also have been made, and some have shown in vivo
efficacy, but the cyclophilin inhibition potencies of most of the
compounds are lower than those of CsA analogs [48–56]. In
similarity to sanglifehrin-derived compounds, no small molecule
cyclophilin inhibitors have advanced to clinical trials to our
knowledge. Finally, genetic knockdown or knockout technolo-
gies have been used extensively to interrogate cyclophilins in
experimental models but not yet as clinical therapeutics.

3. Cyclophilins and their antagonists in liver
pathophysiology

3.1. Cyclophilin involvement in mitochondrial
metabolism

It is generally accepted that NASH liver pathology is driven by
maladaptive lipid and carbohydrate metabolism producing
imbalances and overproduction of lipids, especially longer
chain fatty acids, thus driving cellular toxicities. Obesity, meta-
bolic syndrome, and insulin resistance or diabetes are com-
monly associated with NASH and act in concert to drive
metabolic disturbances. The metabolic changes are accompa-
nied by an array of pathological activities including oxidative/
nitrosative stress, endoplasmic reticulum (ER) stress, inflamma-
tion, ischemia, apoptotic and necrotic cell death, fibrogenesis,
and oncogenesis to varying degrees among individuals.

Mitochondria play a central role in metabolism as the orga-
nelle responsible for fatty acid beta-oxidation, pyruvate dehy-
drogenation, the citric acid cycle, and ATP generation.
Considerable evidence has accumulated that cyclophilin D (Cyp
D) in themitochondrial matrix participates directly or indirectly in
many of these processes and that pharmacologically targeting
Cyp D may improve the metabolic perturbations in NASH. Cyp
D levels increase in animal models of obesity and metabolic
syndrome and decrease when disease is reversed, for example
by exercise [57–61]. The most understood mechanism by which
Cyp D regulates mitochondrial function is its role as an inducer of
the mitochondrial permeability transition (mPT) which is
a common mechanism of cellular injury and death [62] (Figure
1). mPT was observed as early as the 1950’s and now is under-
stood to represent the formation of large, high-conductance
pores in the inner mitochondrial membrane that results from
excessive calcium uptake in combination with elevated oxidative
or nitrosative stress and inorganic phosphate (i.e. ATP depletion)
[48,63–70]. mPT pores conduct ions and molecules up to 1.5 kDa
in size which, in the pathological state, elicits a cascade of
mitochondrial depolarization, swelling, reactive oxygen species
(ROS) production, and if left unchecked, mitochondrial mem-
brane rupture. Ultimately necrotic cell death ensues and is some-
times accompanied by apoptotic mechanisms due to release of
apoptosis-inducing molecules from the mitochondria. Since the
triggering events of calcium dysregulation and oxidative stress

Figure 1. Cyclophilin D regulates mitochondrial metabolism and integrity through binding to multiple mitochondrial proteins, including mitochondrial permeability
transition pores (mPT). Cyclophilin D regulates glycolysis, β-oxidation, and ATP production through interactions with several key mitochondrial proteins. In
pathological conditions Cyp D is recruited from the matrix to the inner mitochondrial membrane and promotes mPT in response to excessive matris calcium,
ROS, and phosphate. Ion and metabolite flux through mPT pores in the inner mitochondrial membrane results in mitochondrial swelling, membrane rupture, and
release of pro-apoptotic moleclues. Cell death ensures when mitochondrial injury or loss exceeds a thresold and can be blocked by cyclophilin D inhibition.
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arise from many types of tissue insults, mPT has been documen-
ted in many disease and injury states, including lipotoxicity and
other forms of hepatic injury. Cyp D-regulated pore openings
also occur physiologically but at lower amplitudes and appear to
act as a homeostatic ‘release valves’. However, the consequences
of blocking these transient openings appear to be minimal, in
contrast to the highly protective effects of blocking pathologic
mPT [63,69–74]. Cyp D levels are higher in hepatic and cardiac
mitochondria than in other tissues, which translates to higher
mitochondrial calcium concentrations and higher sensitivity to
mPT induction [75–81]. Cyp D knockout or pharmacological
inhibition greatly reduces sensitivity to mPT and thereby pre-
vents cell death, except under the most extreme conditions, and
indeed the ability to block cell death with CsA has become the
diagnostic hallmark of mPT.

Although Cyp D is best known for its regulation of mPT-
mediated cell death, studies also have begun to elucidate
a major role in global mitochondrial metabolism. Genetic Cyp
D knockout in mice has been found to change metabolic activ-
ities in the liver, heart, skeletal muscle, bone, and kidney [80,82–
86]. The two major changes are a decrease in fatty acid β-
oxidation and an increase in glycolysis. The decline in β-
oxidation is characterized by decreases in carnitine palmitoyl-
transferase I (CPT1) and trifunctional protein activity and
increases in acylcarnitine species. Cyp D ablation also changes
acetylation levels of many mitochondrial proteins that may favor
lower β-oxidation rates [87]. The increase in glycolysis is charac-
terized by elevated levels of lactate, pyruvate, and mRNA of
several glycolytic enzymes. Cellular glucose levels were also
found to be elevated, suggesting stimulated gluconeogenesis.
Concentrations of NADH, NAD+, FAD, and acetyl-CoA decreased
slightly, but mRNA levels and activities of Krebs cycle (citric acid
cycle) enzymes and respiratory complex enzymes were
unchanged in Cyp D -/- mice. The net effects of these metabolic
alterations were found to be a slight increase in ATP production
due to an increase in glycolysis and/or ATP synthasome activity,
yet a reduction in oxygen consumption [82,83,88,89]. These
metabolic changes were also evident in an examination of exer-
cise capacity, where Cyp D knockout mice showed higher exer-
cise capacity (longer and faster treadmill activity) but lower
oxygen consumption both during exercise and at rest, compared
to wildtype mice [90].The mechanisms through which Cyp
D deletion results in this shift in metabolism have not been
thoroughly studied, but one possibility is by downregulation of

mitochondrial gene transcription. Cyp D silencing in cell culture
by genetic knockdown or CsA was found to block Cyp
D interaction with mitochondrial transcription factors 1 and 2
and in turn decrease mitochondrial RNA synthesis [91]. Other
candidate mechanisms require investigation, since Cyp has been
shown to bind tomany prominent mitochondrial proteins (Table
1) [57]. Included in this list are trifunctional protein which orches-
trates β-oxidation, redox-sensitive theoredoxins, and molecules
at the core of ATP production such as F-ATPase which also is
a lead candidate for the pore-forming molecule of the mPT [92].

The decrease in β-oxidation with Cyp D deletion may seem
counter-productive to resolving the lipid overload in NASH but
in fact may preserve mitochondria over the long run by pre-
venting the harmful effects of elevated β-oxidation. High rates
of β-oxidation necessarily drive high oxygen flux and
a proportional spill-over of reactive oxygen species (ROS) pro-
duction which also is exacerbated by electron transport chain
(ETC) uncoupling. Indeed, Koliaki et al. (2015) found that mito-
chondria from NAFLD livers have high oxygen consumption,
a moderate increase in ROS-induced lipid peroxidation, and ETC
uncoupling indicative of inefficient ATP production [105]. Upon
progression to NASH, mitochondria had even higher levels of
ROS, lipid peroxidation, depressed antioxidant defenses, and
ETC uncoupling. NASH mitochondrial mass was elevated, pre-
sumably as an attempt to compensate for poor ATP production,
yet oxygen consumption was reduced compared to NAFLD.
Together these observations point to significant mitochondrial
dysfunction in NASH and an inability to cope with prolonged
steatosis and heightened β-oxidation. Widespread mitochon-
drial swelling is evident [106], consistent with high ROS- and
low ATP-induced mPT. Thus, Cyp D inhibition may be protective
in NASH both by preventing mitochondrial exhaustion arising
from prolonged β-oxidation and ROS production and later by
blocking mPT-mediated cell death.

Higher rates of glycolysis arising from Cyp D silencing also
may be advantageous by improving glucose handling systemi-
cally. In support of this hypothesis, two studies found better
glucose tolerance in high fat diet (HFD)-fed Cyp D -/- mice
compared to wildtype mice, whereas two other studies found
no improvement [82,107–109]. In the studies where Cyp
D ablation improved glucose tolerance, themice also had slightly
higher insulin levels, pancreatic islet β-cell proliferation, and
other markers of improved insulin resistance [58,82,107]. Anti-
diabetic effects of Cyp D deletion also were observed in murine

Table 1. Cyclophilin D molecular interactions.

Cyp D Interaction Function of Interacting Protein

F-ATPase Generates ATP from proton gradient across IMM [89,92–94]
Adenine nucleotide translocase Exchanges ATP and ADP across the IMM [69,95]
Inorganic phosphate carrier Transports phosphate ions across IMM [69]
Trifunctional protein Catalyzes 3 of 4 steps of long-chain and medium-chain fatty acid β-oxidation [82]
Mitochondrial transcription factors 1 and 2 Regulators of mitochondrial gene expression [91]
Electron transport chain complexes III Electron transport chain [96]
Thioredoxin 2 and peroxiredoxin Primary molecules in thioredoxin antioxidant system [145,147]
Inositol triphosphate receptor (IP3R) Calcium channel in IP3R/VDAC/Grp75 complex that transports calcium between mitochondriaand ER

at mitochondria-associated ER membranes (MAMs) [97,111]
Tumor suppressor p53 Tumor suppressor whose mutations are common in human cancers [98,99]
Peroxisome proliferator-activated receptor-α Transcription factor and regulator of lipid metabolism [100]
Glycogen synthase kinase-3β (GSK-3β) Serine/threonine kinase [101,102]
Apoptosis signal-regulating kinase 1 (ASK-1) MAPK family kinase activated by cellular stresses [103]
B-cell lymphoma 2 (BCL2) Regulator of apoptosis [104]
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diabetes induced by a deficiency in the islet β-cell transcription
factor, pancreatic duodenal homeobox gene-1 [110].

Most studies that have investigated hepatic steatosis have
found that Cyp D knockout reduced or completely prevented
steatosis or weight gain after HFD feeding [58,82,109,111,112]. In
livers of wildtype mice, Cyp D increased with HFD and even
preceded triglyceride accumulation [58,59]. Furthermore, adeno-
viral vector-mediated overexpression of Cyp D induced hepatic
steatosis in mice administered a normal diet. Wang et al. (2018)
found good evidence in HFD-fed mice and palmitate-treated
hepatocytes in culture that Cyp D-mediated steatosis resulted
from elevated mPT (mitochondrial swelling and cytosolic cal-
cium), ROS generation, ER stress (IRE1α phosphorylation), p38
MAPK phosphorylation, and upregulation of sterol regulatory
element-binding protein-1c (SREBP-1c) [58]. Elevated Cyp D,
cytosolic calcium, and ER stress were also found to mediate
hepatic steatosis originating from a deficiency of mitochondrial
glycerol 3-phosphate dehydrogenase (mGPDH), which is
observed in NAFLD patients [60]. mPGDH regulated Cyp
D levels by modulating Cyp D ubiquitination and proteasomal
degradation. Cyp D knockout in vivo and in vitro abolished the ER
stress and liver steatosis arising from mGPDH deficiency.

Cyp A is another cyclophilin isoform that might contribute
to NASH pathophysiology through its participation in the
adipocyte-diabetes axis. Cyp A is the most abundant cyclophi-
lin in the body and normally located in the cytosol but also is
released from cells by oxidative stress. A proteomics study
found that high glucose decreased monocyte cellular levels
of Cyp A and increased Cyp A secretion. Similarly, serum Cyp
A levels were found to be elevated in diabetic patients, espe-
cially in those with cardiovascular disease [113,114]. NAFLD
patients also exhibit increased serum concentrations of Cyp
A compared to non-NAFLD individuals, and this effect is com-
pounded by diabetes [115]. As described in more detail ahead,
elevated extracellular Cyp A has a proinflammatory effect and
therefore may serve as one of the mechanistic links between
glucose dysregulation and inflammation. In another study,
genetic knockout of Cyp A decreased adipocyte size and fat
mass in mice fed a normal diet, and reduced the weight of
mice administered a high fat diet [116]. Cyclophilin B (Cyp B)
also is pro-inflammatory when secreted, and serum levels of
Cyp B are elevated in HFD-fed mice and in people with meta-
bolic syndrome compared to healthy controls [117].

In vitro studies with CsA have reinforced findings fromgenetic
knockout/knockdown by showing that cyclophilin inhibition can
protect mitochondria from the kinds of metabolic disturbances
that occur in NASH. For example, CsA blocked mPT in liver
mitochondria following application of short-, medium-, and
long-chain fatty acids or lysophosphatidylcholine [118–121];
blocked mPT and significantly reduced mitochondrial ROS, ATP
depletion, and death of preadipocytes induced by high fatty acid
concentrations [122]; blocked mPT and significantly reduced
fructose-induced or high glucose-induced death of INS-1 pan-
creatic islet cells [123]; blocked mPT and restored the ATP deficit
induced by long-chain fatty acids or palmitoyl-L-carnitine in
cardiac mitochondria [124–128]; blocked mPT and prevented
palmitate-induced insulin resistance in muscle mitochondria
[107]; blocked hepatocyte death resulting from high glucose

and hydrogen peroxide [129]; and alleviated fatty acid-induced
ER stress gene induction, ROS elevation, and death of LO2 hepa-
tocytes [60,130]. Düfer et al. (2001), in contrast, found that CsA
diminished glucose-induced insulin secretion of mouse pancrea-
tic islets in vitro by inhibiting glucose-stimulated oscillations of
the cytoplasmic free calcium concentration [131].

The in vivo effects of CsA on lipid and carbohydratemetabolism
have been more ambiguous than in vitro effects, perhaps due to
confounding calcineurin inhibition. In similarity to CypD knockout,
Wang et al. (2018) found that CsA treatment of mice from Weeks
30–36 of a 36-week HFD regimen reduced hepatic steatosis and
triglyceride levels by 50% [58]. Another study with mice similarly
showed that CsA diminished HFD-inducedweight gain, gluconeo-
genic gene expression, blood glucose concentration, proinflam-
matory cytokine production, and improved glucose tolerance over
a 3 week treatment period [132]. In contrast to these two studies,
high doses of CsA administered to mice on a regular diet had
opposite effects of Cyp D knockout from the standpoint of mito-
chondrial metabolism [86]. Also, CsA administration to rats on
normal diet resulted in elevated serum triglycerides and character-
istics of insulin-resistance [133]. Thus, CsA had beneficial effects in
HFDmodels but not in regular dietmodels. In clinical practice, new
onset diabetes after transplantation (NODAT) is a frequent occur-
rence in kidney transplant patients administered either CsA or
tacrolimus, suggesting that diabetic effects can arise from calci-
neurin inhibition. Interestingly, less NODAT develops in CsA-
treated patients compared to tacrolimus-treated patients [134].
Moreover, in a study where renal transplant patients with diabetes
were switched from tacrolimus to CsA immunosuppression,
approximately 40% of the patients showed complete diabetes
reversal [135]. These findings are consistent with the hypothesis
that Cyp D inhibition is not diabetogenic and in fact can improve
glucose handling. In support of this hypothesis the non-
immunosuppressive CsA analog, alisporivir (Debio-025), was admi-
nistered to over 2000 individuals during its clinical development
for chronic HCV infection and did not induce hyperglycemia or
other diabetes characteristics [33–35,136]. Alisporivir-treated
patients developed a small degree of hypertension and hypertri-
glyceridemia but at high doses and always in combination with
pegylated interferon. In summary, abundant evidence has accu-
mulated suggesting that inhibition of cyclophilins A, B, and espe-
cially D may alleviate metabolic disturbances by shifting the
dynamic of glucose and lipid metabolism and by protecting
against the mitochondrial exhaustion and demise that occurs in
NASH.

3.2. Cyclophilin involvement in cellular injury

The mechanisms by which lipid and metabolic disturbances
injure cells in NAFLD and NASH have been detailed in many
reviews [137–142]. Mitochondrial dysfunction and destruction
play central roles, but other cell-damaging processes also are
prominent, such as other types of mitochondrial damage (e.g.
outer membrane pores), apoptotic modes of cell death, ROS-
mediated damage to other organelles and processes, hypoxia,
ER stress, autophagy dysregulation, and inflammation.

As introduced above, Cyp D is the primary regulator of
mPT. It’s induction of mPT pores in response to elevated
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mitochondrial ROS appears to occur through cysteine-203 of
the Cyp D molecule. Oxidation of this amino acids activates
mPT, and nitrosylation deactivates mPT [143–146]. Cyp
D redox function may also be regulated by its phosphoryla-
tion, acetylation, and binding to two primary molecules
involved in the thioredoxin system – thioredoxin 2 and per-
oxiredoxin [145,147]. Besides the positive metabolism-related
effects of Cyp D inhibition observed in dietary models, many
additional studies have documented protection from mPT
injury in animal and clinical studies across a spectrum of
liver disorders. mPT has been classically described in ischemia-
reperfusion injuries, and recently in murine liver ischemia-
reperfusion a small molecule cyclophilin inhibitor was shown
to reduce hepatocyte ballooning and ALT rise, and nearly
completely restore mitochondrial respiratory control [53].
Hepatectomies, such as liver cancer resection or living donor
transplantation, sometimes cause liver insufficiency and mor-
tality. In rodent hepatectomy experiments CsA and a first-
generation, non-immunosuppressive CsA analog blocked
necrosis, apoptosis, ALT rise, and augmented regeneration of
the remnant liver which is consistent with a major role of mPT
in hepatectomy-induced pathology [148–151]. Hepatitis viral
proteins such as HBx and HCV core protein can induce mPT or
sensitize mitochondria to mPT induction by ROS, and Cyp
D-dependent mechanisms may assist HBV in replication
[152–155]. Furthermore, recombinant expression of the com-
plete HCV protein repertoire in cells in the absence of viral
replication induces mPT, ROS, and a decline in oxygen con-
sumption, all of which are reversed by alisporivir [156].
Cholestasis-induced mPT was demonstrated in the rat bile
duct ligation model, where the cyclophilin inhibitor, NIM811,
decreased ALT, necrosis, and apoptosis by 60 to 86% [157].
Acetaminophen overdose toxicity is the most common cause
of acute liver failure and occurs because an acetaminophen
metabolite (N-Acetyl-p-benzoquinone imine) causes glu-
tathione depletion and mitochondrial protein adducts which
in turn lead to elevated oxidant stress and GSK-3β, JNK, and
Bax signaling. The ensuing mPT, ROS formation, and cell death
can be substantially alleviated by CsA, NIM811, or Cyp
D knockout although the degree of protection also depends
on acetaminophen dose [158–160]. Chronic alcohol consump-
tion in rodents was found to increase Cyp D, cause mitochon-
drial swelling, and sensitize mitochondria to mPT in the liver,
although mitochondrial depolarization and hepatocyte apop-
tosis were not sensitive to CsA or Cyp D knockout [161–163].
In a human clinical study on chronic hepatitis C, 14 days of
NIM811 administration normalized ALT levels, consistent with
hepatic cytoprotection [32]. Thus, mPT-mediated liver pathol-
ogy and its attenuation by cyclophilin inhibition have been
widely documented.

Dyslipidemia in NAFLD and NASH impacts not onlymitochon-
dria but also the primary organelle involved in lipid synthesis
(triglycerides, lipoproteins, phospholipids, cholesterol), the endo-
plasmic reticulum. Significant perturbations to lipid synthesis, in
similarity to stresses on protein synthesis, can induce the
unfolded protein response (UPR). Long chain saturated fatty
acids (e.g. palmitate), sphingolipids, and lysophosphatidylcho-
line can all induce UPR. ROS and calcium perturbations are
additional causal factors as well as consequences of ER stress.

The UPR attempts to compensate for increased demands on the
ER, for example through increases in chaperone proteins, but
excessive UPR exacerbates steatosis and can promote inflamma-
tion and apoptosis. Intracellular signaling cascades producing
these outcomes originate from three ER transmembrane sensors,
inositol-requiring enzyme (IRE)-1α, protein kinase RNA-like ER
kinase (PERK), and activating transcription factor (ATF)-6α
[5,164,165]. ER stress was found to be a prominent mechanism
in steatosis exacerbated bymGPDH knockout, andwas facilitated
by Cyp D, as demonstrated by complete reversal of the UPR
response pathways by CsA [60]. In contrast, several studies
show that CsA or specific cyclophilin isoform deletions (e.g. Cyp
B) induce ER stress and/or UPR. These findings were often
observed with cancer cells which may be more susceptible to
ER stress due to the need for cyclophilins to support high meta-
bolic demands. Another caveat is that the concentrations of CsA
that generated UPR in many of the studies exceeded the CsA
half-maximal cytotoxicity concentration (CC50 ≈ 12 µM) [43,166–
171]. Therefore, ER stress may indeed be a mechanism of high-
dose CsA cytotoxicity, but most studies do not show that cyclo-
philin inhibitors at therapeutic concentrations induce ER stress.

Autophagy is an important cellular process in which aged
or damaged organelles and molecules are degraded and
recycled into anabolic processes in order to maintain cellular
homeostasis. It can be impacted, however, by mitochondrial
dysfunction, ROS, lipid disturbances, and other stresses. Most
studies have found impaired autophagy in animal and human
NAFLD and have found exacerbated liver disease in animals
when autophagy is experimentally lowered in hepatocytes or
macrophages. In contrast, lowering autophagy in hepatic stel-
late cells is beneficial as it decreases their activation and
fibrotic activity [172,173]. Autophagic flux is high in many
types of cancer, including hepatocellular carcinoma (HCC), in
order to sustain their high metabolic activity. Thus, pharma-
cologically modulating autophagic activity may have positive
or negative outcomes, depending on endogenous inhibitors
or activators, and the type or functional status of the cells.
Blocking Cyp D-mediated mPT can help to maintain or restore
normal autophagic activity by preventing excessive ROS and
other mitochondria-derived signals from impacting autophagy
[174–178]. In contrast, blocking Cyp A or B can decrease
autophagy, but this is therapeutic toward several types of
cancer that are dependent upon high autophagic activity
[166,179,180]. For example, genetic ablation of Cyp A or B or
high concentrations of NIM811 were found to increase vacuo-
lation, ER stress and UPR, decrease autophagy, and kill glio-
blastoma multiforme cells [179]. The heterogeneous effects of
autophagy modulation is also evident in the literature about
CsA-induced nephrotoxicity, where some investigations found
induction of autophagy and some studies found reduction in
autophagy [181,182]. Thus, the data suggest that cyclophilin
inhibitors may indeed influence autophagic processes in
NASH, but the clinical effects will depend on drug dose and
the pathophysiological context in which they are acting.

3.3. Cyclophilin involvement in inflammation

Hepatic inflammation distinguishes NASH from NAFLD and
occurs through many mechanisms. Cytosolic inflammasomes
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are part of the innate immune systems and generate IL-1β and
IL-18 when activated by molecular species called damage
associated molecular patterns (DAMPs; e.g. mitochondrial
DNA or N-formyl peptides) or pathogen-associated molecular
patterns (PAMPs; e.g. lipopolysaccharide, LPS). DAMPs derive
from damaged organelles or malfunctional molecules and can
become more abundant in disease states, for example when
autophagy is impeded. PAMPs derive from bacteria, fungi, or
other non-human organisms and can become prevalent in
metabolic system and fatty liver disease as a result of pertur-
bations of the microbiome. Blocking Cyp D and mPT-mediated
cellular damage can suppress oxidized phosphatidylcholine
(DAMP)-mediated and LPS (PAMP)-mediated inflammasome
activity in macrophages [183–185].

Another, and likely more significant, role for cyclophilin inhi-
bition is in attenuating the infiltration and proinflammatory
activation of leukocytes (Figure 2). Cyp A, which is predominantly
a cytosolic protein, is released from cells under oxidative stress or
other injury conditions concomitant with its acetylation [186].
Cyclophilin B, predominantly an ER protein, is also secreted in
certain injury states by unknown mechanisms. Serum levels of
Cyp A or B are elevated in many disease states including NAFLD,
NASH, metabolic syndrome, and type 2 diabetes [113–
115,117,187–192]. In the extracellular milieu cyclophilins act
both as leukocyte chemoattractants and as pro-inflammatory
cytokines by binding to the transmembrane receptor, CD147
(EMMPRIN), and perhaps other receptors on granulocytes, mono-
cytes, and CD4 T cells [193–197]. The cell surface expression of

CD147 itself is dependent upon another intracellular cyclophilin
isoform, cyclophilin 60 [198]. Cyclophilin binding to CD147 is
partially dependent on a functional isomerase active site and is
inhibited by CsA [193,199]. CD147 is also present on hepatic
stellate cells and contributes to cell activation and fibrogenesis
[200–202]. Signaling downstream of CD147 occurs through
ERK1/2, NFκB, and SMAD2 [188,193,203] to generate proinflam-
matory cytokines (e.g. IL-6, IL-8), matrix metalloproteinases (e.g.
MMP2, MMP9), and ROS. Cyclophilin inhibitors block binding to
CD147 and these and genetic Cyp A deletion have exerted
potent anti-inflammatory activities in animal models of chronic
asthma, arthritis, atherosclerosis, acute pulmonary embolism,
stroke, thrombosis, aortic aneurysm, myocarditis, coronary artery
disease, pulmonary arterial hypertension, amyotrophic lateral
sclerosis, and other conditions [192,204–213]. One of the activ-
ities of activated leukocytes is the oxidative burst in which
NADPH oxidase generates ROS, and Cyp D inhibition has been
shown to decrease oxidative burst and its consequences both
in vitro and in vivo [214]. In reference to liver disease, Iordanskaia
et al. (2015) used the CsA analog, MM284, to exclusively target
extracellular cyclophilins in a mouse model of biliary atresia and
found it to robustly attenuate liver inflammation, hyperbilirubi-
nemia, and expression of IL-6, TIMP-4, and MMP-7 [203]. MM284
completely blocked SMAD2 phosphorylation both in vivo and in
cultured human hepatic stellate cells in which SMAD2 phosphor-
ylation was stimulated by extracellular Cyp A. The latter findings
are significant because the SMAD pathway is involved in TGFβ-
mediated, profibrotic activities.

Figure 2. Secreted cyclophilins A and B act as a pro-inflammatory cytokines. Cyco = lophilins A and B are secreted by hepatocytes in response to oxidative and
other cellular stresses, Cyp A/B binding to the proinflammatory receptor, CD147, on monocytes, lymphocytes, and granulocytes promotes parenchymal infiltration
and activation of inflammatory cells. Stimulation of CD147 on hepatic stellate cells promotes fibrosis.
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3.4. Cyclophilin involvement in fibrosis

Liver fibrosis invariably results from persistent hepatocyte injury
and inflammation, and regressing fibrosis is one of the highest
priorities in treating NASH. Many compounds in development
are addressing this goal by targeting upstream (i.e. metabolic)
disturbances that eventually lead to fibrotic scarring. Inhibition of
Cyp D-mediated mPT and Cyp A/B-mediated inflammatory
events fall into this category. Another strategy is to target fibrosis
more proximally by modulating the activities of hepatic stellate
cells, the primary cell type responsible for extracellular matrix
production [215]. Collagens produced by activated stellate cells
are the primary components of the fibrotic matrix, and Cyp B is
the most catalytically active of several ER prolyl isomerases
known to regulate collagen production (Figure 3) [216,217].
The importance of prolyl isomerases derives from the high pro-
line content of collagen. The helical portions of collagen alpha-
chains consist of repeating units of glycine-X-Y, where X is usually
proline and Y is usually proline that is additionally hydroxylated
by prolyl hydroxylases (i.e.hydroxyproline). Hydroxylation of col-
lagen proline and lysine residues is critical to collagen formation
because the hydroxylated amino acids provide thermal stability
to the collagen helices and serve as the substrates for cross-
linking procollagen molecules after they are secreted from
cells. Cyp B associates with prolyl-3-hydroxylase isoform 1
(P3H1) and multiple lysyl oxidase isoforms (LH1, LH2, LH3) and
thereby assists in many hydroxylation events [218–220].

A second major role for Cyp B is to catalyze cis-to-trans isomer-
ization of the nascent proline residues (8–16% cis) which is
required, and indeed is the rate-limiting step for proper folding
of collagen alpha-chains into a triple helix [216,218,221]. The
consequences of ablating Cyp B have been thoroughly studied
in mice and are similar to the effects of rare autosomal recessive
mutations in horses and humans which result in hereditary
equine regional asthenia (HERDA) and human osteogenesis
imperfecta, respectively. In all these conditions there are reduc-
tions in the folding rate and total production of collagen, and
disruptions in the structural organization of collagen fibrils in
skin, tendon, and bone. The skin, for example, shows sparser and
disorganized collagen fibrils, hyperextensibility, and decreased
stiffness and strength, and bone shows decreased volume,
mineral density, and strength. Biochemically, collagen prolyl
and lysyl hydroxylations, glycosylations, and crosslinking all are
decreased or changed by Cyp B deletion [219,220,222–225].
These observations represent the extremes of Cyp
B interference, i.e. complete ablation and interference with col-
lagenous tissue development.

Pharmacological inhibition of cyclophilins has not shown
such significant collagenous tissue disturbances as those gen-
erated by Cyp B genetic deletion or mutation. For example,
osteoporosis is not a major side effect of CsA use in organ
transplantation [226–228]. However, cyclophilin inhibitors do
reduce collagen production in vitro and in vivo. CsA, NIM811,

Figure 3. Cyclophilin B controls collagen synthesis, Cyclophilin B, alone or in association with prolyl-3-hydroxylase 1 (P3H1) and cartilage associated protein
(CRTAP), or with lysyl hydroxylases 1 or 2 (LH1, LH1) binds to proline residues in collagen alpha-chains during procollagen synthesis in the endoplasmic reticulum.
Genetic deletion or inhibition of Cyp B results in decreases in prolyl and lysyl hydroxylations, procollagen cynthesis rates, mature collagen fibril density, and tensile
strength of collagenous matrices.
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and SCY-635 have been shown to decrease collagen secretion
from rat hepatic stellate cells, human fibroblasts, and a human
stellate cell line by at least 50% and increase MMP1 collage-
nase production. This effect is accompanied by diminished
SMAD2 and 3 phosphorylation (TGFβ signaling pathway) and
lower collagen RNA levels [229–232]. In rodent studies CsA
and NIM811 decreased carbon tetrachloride (CCl4)-induced
liver fibrosis, and NIM811 additionally decreased serum ALT,
AST, liver inflammation, TIMP-1 and TGFβ mRNA [233,234].
CRV431 decreased liver fibrosis both in the murine CCl4
model and in the streptozotocin-plus-HFD (STAM) mouse
model of NASH. CRV431 additionally reduced the develop-
ment of liver tumors by 50% during a late phase of the
STAM model, which might have resulted from its antifibrotic
activity or perhaps other anti-cancer mechanisms [43]. In the
mouse bile duct ligation model NIM811 did not decrease
fibrosis at 2 weeks post-surgery but did reduce serum ALT
levels and tissue necrosis and apoptosis markers by 60–86%
[157]. NIM811 also decreased cardiac fibrosis by to up 70% in
murine coxsackievirus B3-induced myocarditis [205]. Finally, in
human studies, CsA was evaluated in the 1990’s as a treatment
for primary biliary cholangitis. Despite not reducing PBC-
related mortality, CsA decreased liver damage biomarkers,
slowed cirrhosis progression or regressed cirrhosis in some
studies [233,235,236]. In liver transplantation, the REFINE trial
compared a 1-year course of CsA to tacrolimus (non-
cyclophilin-binding) and found in steroid-free patients no
differences between CsA and tacrolimus in immunosuppres-
sion-related outcomes but less liver fibrosis in CsA-treated
patients. These findings of less collagen production, fibrosis,
and cirrhosis following treatment with cyclophilin inhibitors
are consistent with the well-established, direct role of Cyp B in
collagen production.

4. Conclusion

We have described the primary ways in which the three best-
known cyclophilin isoforms, cyclophilins A, B and D, participate in
pathophysiological activities prevalent in NASH – dysregulated
mitochondrial metabolism, mPT-mediated cell death, inflamma-
tory cell recruitment and activation, and promotion of fibrotic
collagen production and maturation. These activities are not
unique to NASH or liver diseases; they have been studied in
even greater detail in other organ systems and disorders. For
example, most of the understanding of mPT has come from
studies of ischemia-reperfusion injury in myocardial infarction.
Cardiovascular disorders also have been most prominent in
deciphering cyclophilin inflammatory activities. Neurological
injury is an area of great interest as well. Moreover, fourteen
other cyclophilin isoforms exist in the humanproteome, suggest-
ingmany other regulatory roles. The broad functionality of prolyl
isomerization is what links all these disparate activities.

Genetic knockout has been instrumental in defining the
roles of individual cyclophilin isoforms, and pharmacological
inhibition has confirmed those findings in most cases. CsA
and a small number of non-immunosuppressive CsA analogs
have been the primary pharmacological antagonists, and
their therapeutic actions in many disease models have pro-
vided validation that pan-inhibition of cyclophilins, at least

in animal studies, is safe and effective. Thirty-five years of
clinical use of CsA also can attest to the feasibility of target-
ing cyclophilins for extended periods of time. The calci-
neurin-mediated toxicities of CsA have necessitated that
dosing levels be kept as low as possible, but in spite of
that, therapeutic effects of CsA have been observed that
could be attributed to cyclophilin inhibition such as less
liver fibrosis in transplant patients and decreases in cirrhosis
in primary biliary cholangitis. The biggest question that
remains is the extent to which dedicated cyclophilin inhibi-
tors will show therapeutic effects in human disease in com-
parison to the positive effects of gene deletion in animal
models. Dosing and target engagement are major variables,
as is the extent to which cyclophilin-mediated pathologies
occur in NASH. The large number of these processes present
in NASH increases the likelihood of beneficial outcomes.

5. Expert opinion

One of the mysteries surrounding cyclophilins is why genetic
knockout of Cyp A, B, or D does not result in lethality or, in
the case of Cyp A or D, appreciable phenotype change. On
the contrary, Cyp A and D knockouts positively modify dis-
ease course in a wide variety of experimental models.
Another mystery is why two revolutionizing, immunosup-
pressive drugs – cyclosporine A derived from a fungus and
FK506 (tacrolimus) derived from a bacterium – both inhibit
calcineurin but do so by first dimerizing with distinct prolyl
isomerases – Cyp A for CsA, and FKBP12 for FK506? These
peculiarities seem to inform us that catalysis of prolyl iso-
merization is not a pivotal ‘checkpoint’ process whose dele-
tion has catastrophic consequences. A corollary is that their
pharmacological inhibition also should carry a lower risk of
adverse events in comparison to molecular targets that
exhibit knockout lethality. However, these observations also
seem to inform us that the multilevel regulation provided by
cyclophilins – i.e. the amplitude, timing, and localization of
structural and functional events – is an extremely effective
means of fine-tuning biochemical processes and adapting
them to dynamic environments. This versatility probably
explains why cyclophilins and other prolyl isomerases have
been evolutionarily recruited into countless biological pro-
cesses and consequently pathophysiological processes when
exposed to supraphysiologic stimuli.

In our opinion the ability to directly target multiple patho-
physiological processes in NASH and other complex diseases
with a single compound is a major advantage of cyclophilin
inhibitors. Dyslipidemia, insulin resistance/diabetes, obesity,
hypertension, and dysbiosis all are drivers of NASH, but
these phenomena and their pathogenic sequalae – mitochon-
drial dysfunction and loss, hypoxia, inflammation, fibrosis,
malignancy – probably vary in their contributions to NAFLD
and NASH among the population. Normalizing as many of the
process as possible maximizes the opportunity to ameliorate
disease course. Multi-targeting also is advantageous because
in theory it reduces the need to administer many narrowly
targeted drugs in combination and therefore lowers the cost
of treatments and the potential for drug-drug interactions,
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which are important considerations in the present develop-
ment environment.

Multi-targeting carries its own risk of adverse side effects, but at
least for CsA analogs this risk has been minimized by applying the
lessons learned from 35 years of study and clinical use of this
chemical class. The most recently developed CsA analogs possess
physicochemical properties that optimize both the safety and
efficacy of the compounds and thus provide more flexibility for
dosing to clinically appropriate levels [37,43]. CRV431 currently is
the only cyclophilin inhibitor in clinical development for NASH, but
the many benefits of this drug class could be expected to propel
additional compounds into the space. Nonimmunosuppressive
CsA analogs present the most favorable risk-benefit ratio from
a development standpoint, but patent opportunities in this class
are becoming increasingly limited due to decades of research on
cyclosporins. Sangamide compounds such as NV556 show some
promise as potent inhibitors but they are entirely new entities that
have been sparingly researched and not yet thoroughly evaluated
in toxicology studies to our knowledge. Small molecule inhibitors
offer many potential advantages, such as ease and cost of manu-
facturing and modification of pharmaceutical properties, but their
lower potencies of cyclophilin inhibition may be a detriment to
target engagement.

The one pathologic event that we predict will be most
impacted by cyclophilin inhibition clinically is liver fibrosis.
Collagen production should be universally diminished by
cyclophilin inhibitors due to the unequivocal and ubiquitous
roles of Cyp B in collagen production, independent of the
specific stimuli that activate hepatic stellate cells. The pre-
ferred distribution of CsA analogs to the liver makes NASH
a good indication for assessment of the antifibrotic potential
of these compounds but benefits also are predicted to extend
to other fibrotic disorders if sufficient target engagement is
achieved in other organs. Fibrosis reduction is a top priority in
NASH but few compounds in development directly target the
fibrotic process. Therefore, cyclophilin antagonists could be
beneficial in many multi-drug combinations. Many investiga-
tors have proclaimed a need for cyclophilin inhibitors for
a range of clinical disorders, and this need may finally be
met by CRV431 or other compounds in the near future.
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