

¹CONTRAVIR PHARMACEUTICALS INC., Edison, NJ USA, ²Baruch S. Blumberg Institute, Doylestown, PA USA, ³Scripps Research Institute, La Jolla, CA USA

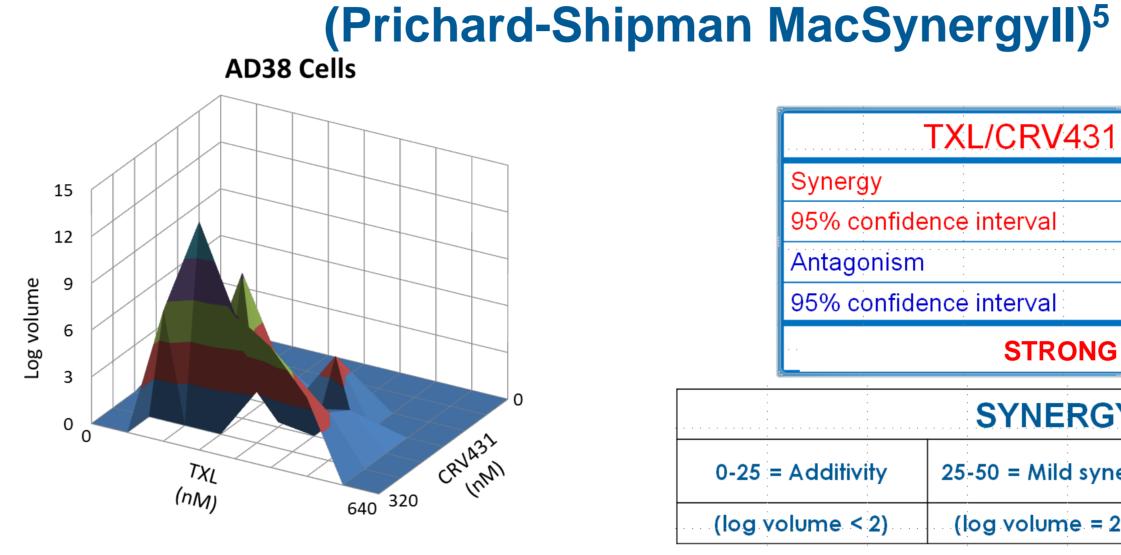
INTRODUCTION

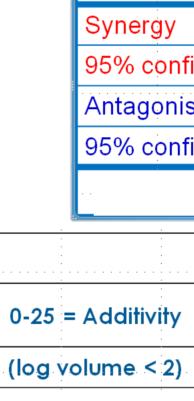
A functional cure for chronic HBV infection will likely require drug combinations targeting the viral life cycle at multiple, complementary stages. CRV431, a cyclophilin inhibitor, blocks HBV interactions with host cyclophilins (cyp) essential for viral replication and chronicity. TXL, a novel tenofovir (TFV) prodrug in clinical development, inhibits HBV polymerase and is designed to deliver high intra-hepatic tenofovir (TFV) concentrations. BAY41-4109 (heteroaryldihydropyrimidine, HAP) and DVR-56 (sulfamoylbenzamide) are both prototype core protein assembly modulators (CpAMs) which block several HBV replication steps, including pre-genomic RNA packaging, misdirection of core protein assembly and cccDNA formation. While HAPs, such as Bay 41-4109, misdirect capsid assembly to form non-capsid polymers of core proteins,² all other reported chemotypes of CpAMs, including DVR-56, induce the formation of variable sizes of capsids devoid of viral pgRNA and DNA polymerase.^{1, 2, 3} In vitro studies will help identify potential future therapeutic combinations to progress into clinical development.

AIM

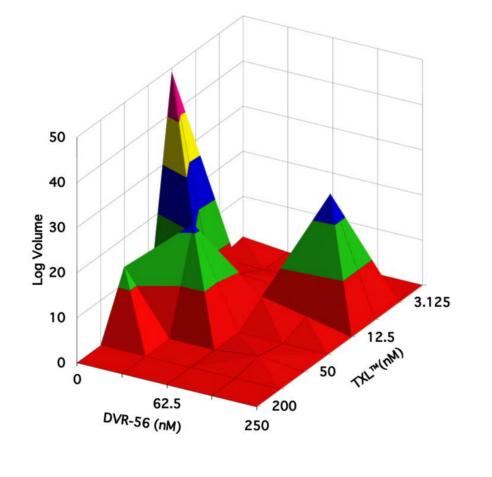
Core protein assembly modulators (CpAMs) block several HBV replication steps. A direct acting antiviral, TXL and host targeting cyclophilin inhibitor, CRV431, along with CpAMs could prove to be a therapeutic option in the future. We selected two CpAMs, each with a different mechanism of action, and reflecting two different biological outcomes. The aim of our current study was to investigate the antiviral activity combinations of TXL, CRV431, and prototype CpAMs (BAY41-4109, DVR-56) by measuring HBV DNA levels in vitro.

METHOD

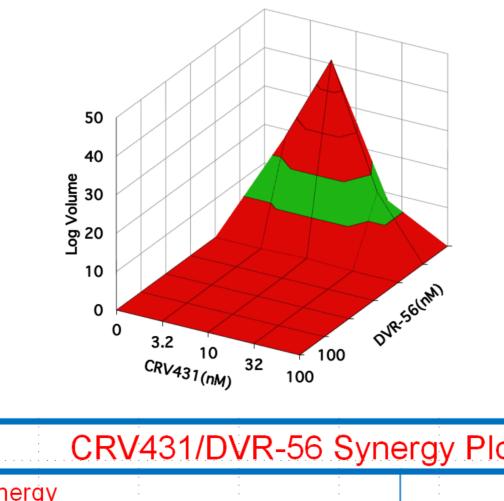

HepAD38cells (triplicate) were treated with increasing concentrations of compounds., tested two at a time. Antagonistic, additive and synergistic effects were analyzed by quantification of intracellular/extracellular HBV DNA by qPCR and analysis by the MacSynergyII program. The compound test concentrations are as follows: CRV431 0-1000 nM, TXL 0-25 nM, DVR-56 0-250 nM and BAY41-4109 0-250 nM.


Assessing the in vitro anti-HBV activity of combinations including CRV431, TXL and prototype core protein assembly modulators

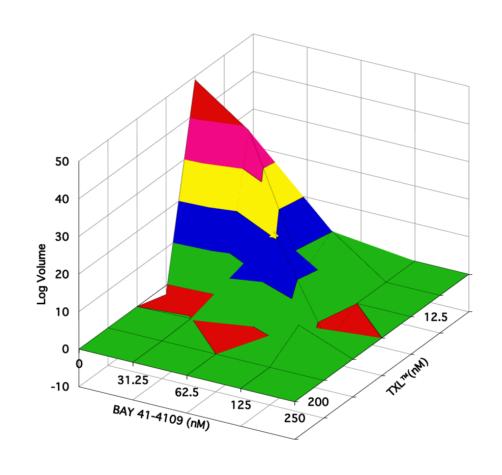
R. Foster¹, A. Janneh², J. Kulp² J. Greytok¹, D. Trepanier¹, D. Ure¹, P. Gallay³


RESULTS

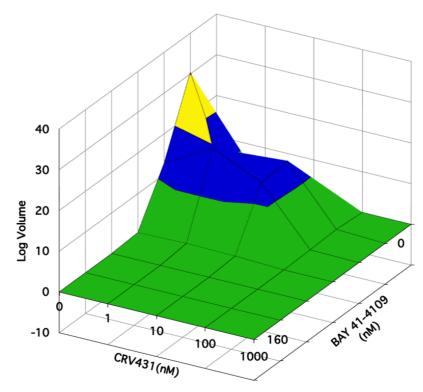
Previously Reported Combination Treatment with CRV431 and TXL Inhibits HBV Synergistically⁴



Combination Treatment with TXL and DVR-56 or BAY 41-4109 Inhibits HBV Synergistically (Prichard-Shipman MacSynergyll)


TXL/DVR-56 Synergy Plot				
Synergy	224.78			
95% confidence interval	310 - 139			
Antagonism	-4.62			
95% confidence interval	-28			
STRONG SYNERGY				

Combination Treatment with CRV431 and DVR-56 or BAY 41-4109 Inhibits HBV Synergistically (Prichard-Shipman MacSynergyll)



CRV431/DVR-56 Synergy Plot					
Synergy	-	198.54			
95% confidence interval	-	270 - 127			
Antagonism	· · · · · · · · · · · · · · · · · · ·	-260.68			
95% confidence interval	-	not significant			
STRONG SYNERGY					

	TXL/CRV	431 <mark>S</mark> yn	ergy Pl	ot		
ergy		232.15		15		
confid	ence interval			324 - 14	40	
gonisn	n	· · · · · · · · · · · · · · · · · · ·		-22.8	36	
confidence interval			-6	39		
	STRO	ONG SYN	ERGY			
	SYNE	RGY/AN	TAGO	NISM		
tivity	25-50 = Milo	l synergy	50-100 = Moderate synergy		>100 = Syne	
< 2)	(log volum	e = 2-5)	(log volu	ume = 5-9)	(log volu	ıme > 9)

TXL/BAY41-4109 Synergy Plot				
Synergy		217.76		
95% confidence interval		251 - 184		
Antagonism	· · · · · · · · · · · · · · · · · · ·	-42.13		
95% confidence interval		-2955		
STRONG SYNERGY				

CRV431/BAY41-4109 Synergy Plot				
Synergy		96.36		
95% confidence interval		98-95		
Antagonism	· · · · · · · · · · · · · · · · · · ·	-14.53		
95% confidence interval		-722		
MODERATE SYNERGY				

RESULTS AND CONCLUSIONS

- of action.

- synergy.

- CVR431/BAY41-4109 = 96.36

ACKNOWLEDGEMENTS

REFERENCES

19(6): 542-8. 2013.87:6931-6942.

Robert T. Foster,

• HBV cure will require an armamentarium that not only targets multiple steps of the viral life cycle but must be complementary in mechanisms

• To date, nucleos(t)ide therapy has been extensively clinically proven to reduce high patient viremia and will continue to be the backbone of future HBV therapy.

CRV431 has multiple modes of action that reduce or interact with HBV proteins (HBsAg, HBeAg, HBx, HBV DNA, pgRNA).

 Combination scores using TXL or CRV431 with a prototype CpAM rated their collective anti-HBV activity from moderate synergy to strong

• TXL/DVR-56 = 224.78

- TXL/BAY41-4109 = 217.76
- CVR431/DVR-56 = 198.54

 All scores calculated by MacSynergy II revealed no antagonism in the combinations towards lowering *in vitro* HBV DNA levels.

• In vitro synergy experiments may prove to be a useful tool in guiding combination therapies to cure chronic Hepatitis B.

• Studying complementary modes of action moves us closer in our efforts to find a cure for HBV.

ContraVir would like to thank the Baruch S. Blumberg Institute and the

Scripps Research Institute for our research collaborations, the conduct of

these studies and our common mission of finding a cure for Hepatitis B.

¹A. Zlotnick et al. Core protein: a pleiotropic keystone in the HBV lifecycle. Antiviral Res. Sept; 121: 82-93. ²S. Stray et al. BAY 41-4109 has multiple effects on Hepatitis B virus capsid assembly. J Mol Recognit. 2006 Nov.-Dec.:

³*M.* Campagna, et al. Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids. J Virol

⁴**R. Foster et al.** CRV431 and TXL(tenofovir exalidex): Anti-HBV combination effects in vitro between a cyclophilin inhibitor and a nucleoside prodrug, ILC 2017 abstract #180.

⁵*Prichard-Shipman MacSynergyII – manual and spreadsheet* <u>*https://www.uab.edu/medicine/peds/macsynergy</u>*</u>

CONTACT INFORMATION

Chief Scientific Officer, ContraVir Pharmaceuticals rfoster@contravir.com; Ph 587-754-75435